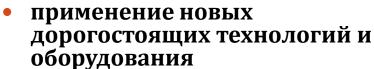
Концепция "Гемба кайдзен" и ее роль в повышении производительности труда.

(экономика труда в бережливом производстве)

Два подхода или концепции производственного менеджмента, мышления и поведения:


Два подхода или концепции производственного менеджмента, мышления и поведения:

- в условиях современного НТП на «мелочи» просто нет времени и надо все «взрывать» и радикально перестраивать (создавать то, чего нет);
- необходимо повседневно искать и находить пути повышения эффективности производства, используя стратегию и тактику мелких улучшений рабочих мест и процессов без больших капиталовложений (улучшать то, что существует).

Два подхода к решению производственных проблем

• инновационный

 рост производительности труда (ПТ)?

<u>ДА!</u>

• снижение затрат?

НЕ ФАКТ!

• Окупаемость методов? ДЛИТЕЛЬНАЯ!

 Постоянное совершенствование или КАЙДЗЕН

 Использование малозатратных методов и инструментов, основанных на здравом смысле

рост ПТ?

<u>ДА!</u>

• снижение затрат?

<u>ДА!</u>

Окупаемость методов?
Почти МГНОВЕННАЯ!

Что же выбрать?

Инновационные методы решения проблем не отбрасываем, иногда (периодически) они необходимы!

Но за основу повседневного менеджмента производством принимаем постоянное (непрерывное) совершенствование рабочих мест (гемба кайдзен) и строим на предприятии производственную систему «Бережливое производство».

<u>Немного истории.</u>

Концепция (философия) «гемба кайдзен» зародилась в Японии. «Гемба кайдзен» — «непрерывное совершенствование» (кайдзен) там, где реально создаются продукты и оказываются услуги, т.е. на рабочих местах (гемба).

Пройдя через США и Европу, до нас «Гемба кайдзен» дошла как производственная система «Бережливое производство».

Вот основные принципы философии «гемба кайдзен» или бережливого производства:

- ▶Прежде всего думай о заказчике
- **≻**Люди это самый ценный актив
- Культура непрерывных усовершенствований (Кайдзен)
- Всё внимание на производственную площадку (Гемба)

Идеалы бережливого производства

1. Безопасность

физическая

психологическая

2. Качество

- отсутствие дефектов, брака
- 3. Производительность труда

отсутствие потерь рабочего времени внутри рабочего цикла и в смене (простои, переналадка и т.д.)

время на работу не добавляющую ценности продукту - минимально

отсутствие брака

4. Незавершённое производство

минимальные запасы

потоки единичных изделий

5. Минимальные затраты

Цена покупателя

Прибыль

Затраты производителя

Что мешает достижению идеалов БП

- 1. Специалисты по БП не знают экономику труда, а экономисты по труду (нормировщики) бережливое производство.
- 2. Разная терминология, применяемая в БП и экономике труда.

Результат:

- 1. Напряжённые отношения
- 2. Дублирование работ
- 3. Отсутствие фиксации результатов
- 4. Сопротивление внедрению в практику инструментов и результатов БП.
- 5. Снижение эффективности БП.

1. Классические системы оплаты труда не адаптированы к БП и не реагируют на меняющуюся после применения инструментов БП "интенсивность" труда работника.

Результат:

- 1. Сопротивление нововведениям рабочих, вплоть до игнорирования изменений и саботажа.
- 2. Сопротивление нововведениям мастеров, начальников участков и т.д.
- 3. Снижение эффективности БП вплоть до его полной остановки.

«ГЕМБА КАЙДЗЕН» ГЛАЗАМИ НОРМИРОВЩИКА

Экономика труда в «бережливом» производстве

Практическое пособие

Ярославль 2017

производительность труда

Остановимся на этом подробнее и обратимся к теории.

Классификация затрат рабочего времени:

в экономике труда

Норма времени на операцию

$$n = Ton * Kon$$
 ,где (1)

- **Коп** – коэффициент к **Топ,** учитывающий затраты времени рабочего за смену на орг.-тех. обслуживание, отдых и подготовительно-заключительное время.

Классификация затрат рабочего времени: в бережливом производстве

Т_{рр} Т_{мн} = Тц - время цикла по рабочему месту

На самом деле при замерах время цикла (**Тц**) распадается на **Трр** или **Трр** min и время потерь, которое будет складываться из **Трр бесполезное**; **Т ожидания** или **Тмн**; **Тпер.раб.**; **Тпереходов.**

В идеале Тц — (должно стремится) Трр min.

Т^{идеал} илеал

- $T_{\mbox{\footnotesize ДОСТ}}^{\mbox{\footnotesize идеал}}$ = время доступное для производительного труда идеальное $T_{\mbox{\footnotesize ДОСТ}}^{\mbox{\footnotesize идеал}}$ = $T_{\mbox{\footnotesize см}}$ $T_{\mbox{\footnotesize олн}}$
- $T_{\text{дост}}^{\phi a \kappa \tau}$ = фактически доступное для производительного труда время $T_{\text{дост}}^{\phi a \kappa \tau} = T_{\text{дост}}^{\text{идеал}}$ $T_{\text{потерь}}$ $T_{\text{потерь}}$ (простоев)

В идеале $T_{\text{дост}}^{\text{факт}}$ (должно стремиться) $T_{\text{дост}}^{\text{идеал}}$

Норма времени по

Норма времени по рабочему месту (1деталь)
$$n = \left(\frac{T_{\text{ц}}}{3_{\text{н}}} \times \frac{T_{\text{см}}}{T_{\text{дост}}^{\text{факт}}}\right) \times \Psi_{\text{р рм}}$$
 , где (2)

- Зн значность или число деталей за 1 цикл (проход инструмента)
- Чр рм число рабочих на данном рабочем месте.

В дальнейшем для простоты будем полагать, что Чр рм = 1, а Тц приведено к одной детали, тогда

$$n = T_{\text{II}} \times \frac{T_{\text{CM}}}{T_{\text{ДОСТ}}^{\Phi \text{AICT}}}$$
 (3)

Известно, что рост ПТ измеряется отношением выработки рабочего за смену после усовершенствований к выработке до усовершенствований.

$$ext{P}_{ ext{IIT}} = rac{ ext{B}_{ ext{после}}}{ ext{B}_{ ext{до}}}$$

(4)

Учтём, что $B = \frac{T_{CM}}{n}$, тогда после сокращений

$$P_{\text{пт}} = \frac{T_{\text{ц до}}}{T_{\text{ц после}}} \times \frac{T_{\text{дост}}^{\text{после}}}{T_{\text{дост}}^{\text{до}}}$$
 (для одной операции) (5)

При изменении конфигурации рабочего места и для процесса

$$P_{\text{IIT}} = \frac{\sum T_{\text{IĮ IIOCAE}}}{\sum T_{\text{IĮ IIOCAE}}} \times \frac{T_{\text{ДОСТ}}^{\text{IIOCAE}}}{T_{\text{ДОСТ}}^{\text{ДОСТ}}}$$
(6)

Рост ПТ в процентах

$$\Pi T (\%) = (P \Pi T - 1) * 100\%$$
 (7)

Предыдущая формула роста ПТ учитывает два направления наших действий:

- воздействие на сокращение потерь внутри цикла, тогда

$$P_{\text{IIT (TII)}} = \frac{\sum T_{\text{II IIOCAE}}}{\sum T_{\text{II IIOCAE}}}$$
(8)

- воздействие на сокращение потерь сменного времени.

$$P_{\text{IIT (Тдост)}} = \frac{T_{\text{дост}}^{\text{после}}}{T_{\text{пост}}^{\text{до}}}$$
(9)

Пример. Нам удалось сократить время цикла с 4 мин до 2 мин. Тогда рост <u>ПТ за счёт это</u>го фактора

Нам также удалось сократить внутренние потери рабочего времени на 1,2 часа и довести Тдост с 6 часов до 7,2часа.

Общий рост ПТ составит

Осталось включить в расчёт роста ПТ фактор «качество»

$$P_{\text{пт(кач)}} = rac{B\Gamma_{ ext{цель(%)}}}{B\Gamma_{ ext{факт(%)}}}$$
, где (10)

ВГцель (%) и ВГфакт (%) – выход годных изделий в процентах соответственно целевой и фактический (до кайдзен).

ВГцель (%) в идеале равен 100%.

Тогда общий рост ПТ

$$P_{\text{IIT}} = \frac{\sum T_{\text{IĮ ДО}}}{\sum T_{\text{IĮ ПОСЛЕ}}} \times \frac{T_{\text{ДОСТ}}^{\text{ПОСЛЕ}}}{T_{\text{ДОСТ}}^{\text{ДО}}} \times \frac{B\Gamma_{\text{ЦЕЛЬ(%)}}}{B\Gamma_{\Phi \text{АКТ(%)}}}$$
(11)

Итак, мы выяснили, что увеличить ПТ можно только воздействуя на уменьшение Тц и увеличение Тдост, а также выяснили, что воздействие на фактор «качество» по сути также ведёт к увеличению Тдост, то есть

Рассмотрим с точки зрения роста ПТ <u>основные</u> инструменты БП

- 1. Стандартизированная работа это самая эффективная последовательность выполнения операций, обеспечивающая качество, безопасность и оформленная бланками стандартизированной работы. Воздействует на уменьшение Тц, увеличение Тдост, уменьшение НЗП.
- 2. Кайдзен мелкие усовершенствования.

Воздействует на Тц и Тдост, на уменьшение НЗП.

3. Система «5S» (сортируй, соблюдай порядок, содержи в чистоте, стандартизируй, совершенствуй).

Воздействует на Тц и Тдост.

4. «ТРМ» (всеобщее обслуживание оборудования) – это такое обслуживание оборудования, которое позволяет обеспечить его наивысшую эффективность на протяжении всего срока службы.

«ТРМ» позволяет устранить (минимизировать) следующие потери:

- поломки кратковременные остановки
- переналадки и регулировки потери при запуске
- снижение скорости обработки дефекты и исправления

Воздействует на увеличение Тдост.

5. «SMED» (быстрая переналадка) – минимально короткий по времени способ переналадки оборудования.

Воздействует на увеличение Тдост.

6.Поток единичных изделий, выравнивание производства «Хейдзунка», система «Канбан».

Воздействует на уменьшение запасов (НЗП).

7. «Джидока» (встраивание качества в процесс производства) – наделение оборудования и операторов (рабочих) возможностями легко выявлять отклонения (или исключить их полностью) и немедленно останавливать работу.

Воздействует на повышение качества или увеличение Тдост.

Tτ

Время такта (Тт) – доступное время необходимое для изготовления единицы продукции при данной производственной программе (ПП)

$$\mathsf{T}_\mathsf{T} = \frac{\mathsf{T} \; \mathsf{ДОСТ}}{\mathsf{\Pi} \mathsf{\Pi}}$$

В отдельных случаях для целей выполнения расчетов в дальнейшем время такта (Тт) мы будем обозначать как Тдост, имея ввиду Т дост на 1 детале-операцию.

Время такта определяется заказчиком? Да и нет. Т дост идеальное или Т дост фактическое? Тт идеальное или Тт фактическое? Какие для производства могут быть последствия, если для расчетов принять Тт идеальное?

Явочная численность

Специалисты по ПС рассчитывают явочную численность рабочих по формуле:

$$oldsymbol{\mathcal{H}_{onep}} = rac{\displaystyle\sum_{i=1}^{n} T_{u_i}}{T_{T}}$$

Экономисты по труду (нормировщики) рассчитывают явочную численность рабочих по формуле:

численность рабочих по формуле:
$$\mathbf{Y}_{_{\mathit{ЯB}}} = \frac{\displaystyle\sum_{N} \sum_{n} n \times \Pi\Pi}{\Phi PB \times K_{_{\mathit{BH}}}}$$

Есть ли между этими формулами сходство? Какая из них более верна или ближе к истине?

Преобразуем формулу нормировщиков с помощью терминологии ПС, приняв для простоты M=1 ФРВ опер = Тсм

Явочная численность

$$\boldsymbol{H}_{\scriptscriptstyle \mathcal{RB}} = \frac{\sum_{n=1}^{n} n \times n \cdot n}{T_{\scriptscriptstyle \mathcal{CM}} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}} \cdot \frac{T_{\scriptscriptstyle \mathcal{CM}}}{T_{\scriptscriptstyle \mathcal{O}OCM}}}{T_{\scriptscriptstyle \mathcal{CM}} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{\frac{T_{\scriptscriptstyle \mathcal{CM}} \cdot n \cdot n}{T_{\scriptscriptstyle \mathcal{O}OCM}}}{T_{\scriptscriptstyle \mathcal{CM}} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM} \times K_{\scriptscriptstyle \mathcal{BH}}} = \frac{n \cdot \sum_{n=1}^{n} T_{\scriptscriptstyle \mathcal{U}}}{T_{\scriptscriptstyle \mathcal{O}OCM}$$

Итак, у нормировщиков

$$\boldsymbol{Y}_{\scriptscriptstyle \mathcal{R}B} = \frac{\sum_{\boldsymbol{T}}^{\boldsymbol{\mu}} \boldsymbol{T}_{\scriptscriptstyle \boldsymbol{\mu}}}{\boldsymbol{T}_{\scriptscriptstyle \boldsymbol{T}} \times \boldsymbol{K}_{\scriptscriptstyle \boldsymbol{B}\boldsymbol{\mu}}}$$

у специалистов БП

$$egin{aligned} egin{aligned} egin{aligned} \sum_{n=0}^{n} T_{u} \ T_{T} \end{aligned}$$

Различие только в Квн

Какая из формул верна?

Преобразуем формулу нормировщиков еще раз, для простоты избавившись от знака суммы.

Явочная численность

При расчете численности (пооперационном), используя формулу Ч яв = $\frac{\mathrm{T_{II}}}{\mathrm{T_{T*KBH}}}$, следует также помнить и еще два нюанса:

- 1. На одном рабочем месте (операции) могут работать несколько человек. (Чррм может быть не равна 1,0)
- 2. За один проход инструмента на рабочем месте (операции) могут изготавливаться одновременно несколько деталей, то есть 3 (значность) может быть не равна 1,0
- 3. Время такта ($T_{\rm T}$) чаще всего рассчитывается в бережливом производстве исходя из суточного объёма производства и действующих графиков, т.е. $K_{\rm cm}$ может быть равен 1, 2, 3 или 4. Тогда формула расчёта явочной численности для n операций некоторого изделия (детали) $\mathbf{Y}_{\rm gg} = \sum_{i=1}^n \frac{T_{u_i}}{T_{\rm T} \times K_{\rm cm}} \times \frac{\mathbf{Y}_{\rm ppm}}{3_{\rm u}} \times K_{\rm cm}$

Квц

Коэффициент внутрицикловой загрузки рабочего ручной работой

Квц =
$$\frac{T pp}{T ц}$$

К вц легко измеряется Величина Квц характеризует степень использования рабочей силы С помощью Квц легко определить резервы рационализации рабочего места.

Ранее мы рассматривали К инт и вывели для него формулу

К инт = Квц* Киспсм.вр или

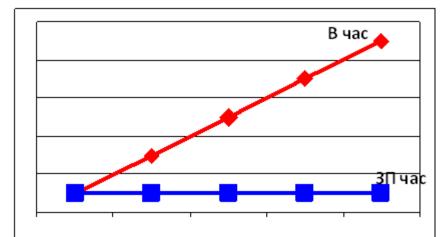
$$K$$
 инт = $\frac{Tpp}{Tu \phi} * \frac{T \text{ дост } \phi}{T \text{ дост идеал}}$

К инт наиболее полно характеризует интенсивность или затраты труда рабочего в смену

Кинт для любых типов производств (не опасен для производств, где Тдост идеал меньше, чем в других производствах)

 $\frac{\text{Кинт}^2}{\text{К инт}^1}$ - точно следует отношению $\frac{\text{B2}}{\text{B1}}$

К инт более чем Квц подходит для использования его в построении систем оплаты труда


В дальнейшем мы все будем рассматривать с Квц (для простоты), но всегда будем иметь ввиду, что вместо Квц в любую из предложенных формул можно поставить Кинт.

Говорят, что сдельная форма оплаты труда в условиях функционирования БП для рабочих несправедлива.

Почему?

Проанализируем классические формулы расчета расценки.

Результат

Действительно несправедливо!

Как решить проблему в рамках существующей методологии труда?

- 1. По каждой операции каким-то образом рассчитать доплату. Сто тысяч операций сто тысяч доплат!? ???
- 2. Реагировать установлением разных размеров премирования. Сто тысяч операций сто тысяч разных премий!? ???

Решения в действующей методологии нет

А что если расценку рассчитывать по формуле

$$P = n * C_{pM}$$
, где

Срм - ставка рабочего места, учитывающая в себе

- •интенсивность труда?

$$C_{pm} = C_{час}*K_{cт}$$
, где

Кст – коэффициент увеличения часовой ставки в зависимости от интенсивности труда или $K_{\text{вц}}$

Рассчитать Кст можно по формуле

$$K_{CT} = \left[1 + \left(\frac{Keu_{nocne}}{Keu_{\partial o}} - 1\right)0,3 \div 0,7\right]$$

Для практического использования формулы за базовые значения примем

$$K_{\text{ви}_{\text{до}}} = 0.4$$

% экономии от кайдзен отдаваемый рабочему - 30% или 0,3

$$K_{CT} = \left[1 + \left(\frac{Key}{0,4} - 1\right)0,3\right]$$

Учитывая, что при **Квц ≤ 0,4 Кст = 1** и **Квц** $_{max}$ ≤ **1**

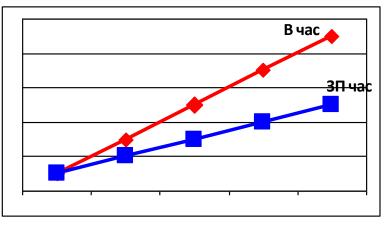
представим формулу в виде таблицы

Примечание:

Можно принять Квц баз=0,5 (даже лучше).

Тогда Кст мах = 1,3, т.е. максимальная доплата составит 30%. Какое Квц принять за базу – дело предприятия.

Значение Квц на рабочем месте	Значение Кст
Квц ≤ 0,40	1,0000
$0,40 < $ Квц $ \le 0,45$	1,0375
$0,45 < $ Квц $ \le 0,50$	1,0750
$0,50 < $ Квц $ \le 0,55$	1,1125
$0.55 < $ Квц $ \le 0.60$	1,1500
$0.60 < $ Квц $ \le 0.65$	1,1875
$0.65 < $ Квц $ \le 0.70$	1,2250
$0.70 < $ Квц $ \le 0.75$	1,2625
$0.75 < $ Квц $ \le 0.80$	1,3000
$0.80 < $ Квц $ \le 0.85$	1,3375
$0.85 < $ Квц $ \le 0.90$	1,3750
$0,90 < $ Квц $ \le 0,95$	1,4125
$0.95 < $ Квц $ \le 1.00 $	1,4500


Вернемся к формуле расценки $P = n^* C_{\text{час}} * K_{\text{ст}}$

$$P = n*C_{\text{час}}*K_{\text{ст}}$$

Результат реализации этой формулы:

Пример

Характеристики	Было	Стало
Трр	24 сек.	24 сек.
Тц	48 сек.	24 сек.
Тдост	7,5 час	7,5час
Квц	0,5	1,0
Кст	1,075	1,45
Счас	60руб	60руб
n	<u>0,86 мин</u>	<u>0,43 мин.</u>
P = n * Счас * Кст	0,92 руб.	0,62 руб.
Вчас	70 шт.	140 шт.
3Пчас	64,7	87,3

Вчас рост в 2 раза

рост в 1,3 раза 3Пчас